247 research outputs found

    Immigration Federalism: A Reappraisal

    Get PDF
    This Article identifies how the current spate of state and local regulation is changing the way elected officials, scholars, courts, and the public think about the constitutional dimensions of immigration law and governmental responsibility for immigration enforcement. Reinvigorating the theoretical possibilities left open by the Supreme Court in its 1875 Chy Lung v. Freeman decision, state and local offi- cials characterize their laws as unavoidable responses to the policy problems they face when they are squeezed between the challenges of unauthorized migration and the federal government’s failure to fix a broken system. In the October 2012 term, in Arizona v. United States, the Court addressed, but did not settle, the difficult empirical, theoretical, and constitutional questions necessitated by these enactments and their attendant justifications. Our empirical investigation, however, discovered that most state and local immigration laws are not organic policy responses to pressing demographic challenges. Instead, such laws are the product of a more nuanced and politicized process in which demographic concerns are neither neces- sary nor sufficient factors and in which federal inactivity and subfederal activity are related phenomena, fomented by the same actors. This Article focuses on the con- stitutional and theoretical implications of these processes: It presents an evidence- based theory of state and local policy proliferation; it cautions legal scholars to rethink functionalist accounts for the rise of such laws; and it advises courts to reassess their use of traditional federalism frameworks to evaluate these sub federal enactments

    Dasatinib inhibits CXCR4 signaling in chronic lymphocytic leukaemia cells and impairs migration towards CXCL12

    Get PDF
    Chemokines and their ligands play a critical role in enabling chronic lymphocytic leukaemia (CLL) cells access to protective microenvironmental niches within tissues, ultimately resulting in chemoresistance and relapse: disruption of these signaling pathways has become a novel therapeutic approach in CLL. The tyrosine kinase inhibitor dasatinib inhibits migration of several cell lines from solid-organ tumours, but effects on CLL cells have not been reported. We studied the effect of clinically achievable concentrations of dasatinib on signaling induced by the chemokine CXCL12 through its' receptor CXCR4, which is highly expressed on CLL cells. Dasatinib pre-treatment inhibited Akt and ERK phosphorylation in CLL cells upon stimulation with CXCL12. Dasatinib also significantly diminished the rapid increase in actin polymerisation observed in CLL cells following CXCL12 stimulation. Moreover, the drug significantly inhibited chemotaxis in a transwell assay, and reduced the percentage of cells able to migrate beneath a CXCL12-expressing murine stromal cell line. Dasatinib also abrogated the anti-apoptotic effect of prolonged CXCL12 stimulation on cultured CLL cells. These data suggest that dasatinib, akin to other small molecule kinase inhibitors targeting the B-cell receptor signaling pathway, may redistribute CLL cells from protective tissue niches to the peripheral blood, and support the investigation of dasatinib in combination strategies

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity

    The fading of reported effectiveness. A meta-analysis of randomised controlled trials

    Get PDF
    BACKGROUND: The "real" effect size of a medical therapy is constant over time. In contrast, the effect size reported in randomised controlled trials (RCTs) may change over time because the sum of all kinds of bias influencing the reported effectiveness is not necessarily constant. As this would affect the validity of meta-analyses, we tested the hypothesis that the reported effect size decreases over time. Furthermore, we tested three hypotheses that would explain a possible change. METHODS: Because of well established outcome measures, the lipid-lowering drugs Pravastatin and Atorvastatin (serum low-density lipoprotein cholesterol, LDL-C) and the anti-glaucoma drugs Timolol and Latanoprost (intraocular pressure, IOP) were chosen for this investigation. Studies were identified by a standardized MEDLINE search. RCTs investigating the above identified medications administered as monotherapy, and in defined dosages, were included. Publication year, baseline (= pre-treatment value in the treatment group of interest) and post intervention means, number of patients and the assignment to experimental or control group were extracted for each study. RESULTS: A total of 625 citations were screened; 206 met the inclusion criteria. The reported effect size of Pravastatin (change of reported effect size in five years: -3.22% LDL-C, P < .0001), Timolol (-0.56 mmHg, P < .0001) and Latanoprost (-1.78 mmHg, P = .0074) decreased over time, while there was no significant change for Atorvastatin (+0.31% LDL-C, P = .8618). Multiple regression analysis showed that baseline values were the most important influencing factor; study size or treatment group did not play a significant role. CONCLUSION: The effectiveness of medical therapies reported in RCTs decreases over time in three of the four investigated pharmaceuticals, caused mainly by baseline differences. We call this phenomenon "fading of reported effectiveness". Under this condition the validity of a meta-analysis may be impaired. Therefore we propose to observe this phenomenon in future meta-analyses in order to guarantee a maximum of transparency

    A Collaborative Filtering Approach for Protein-Protein Docking Scoring Functions

    Get PDF
    A protein-protein docking procedure traditionally consists in two successive tasks: a search algorithm generates a large number of candidate conformations mimicking the complex existing in vivo between two proteins, and a scoring function is used to rank them in order to extract a native-like one. We have already shown that using Voronoi constructions and a well chosen set of parameters, an accurate scoring function could be designed and optimized. However to be able to perform large-scale in silico exploration of the interactome, a near-native solution has to be found in the ten best-ranked solutions. This cannot yet be guaranteed by any of the existing scoring functions

    Homologous Recombination Is Stimulated by a Decrease in dUTPase in Arabidopsis

    Get PDF
    Deoxyuridine triphosphatase (dUTPase) enzyme is an essential enzyme that protects DNA against uracil incorporation. No organism can tolerate the absence of this activity. In this article, we show that dUTPase function is conserved between E. coli (Escherichia coli), yeast (Saccharomyces cerevisiae) and Arabidopsis (Arabidopsis thaliana) and that it is essential in Arabidopsis as in both micro-organisms. Using a RNA interference strategy, plant lines were generated with a diminished dUTPase activity as compared to the wild-type. These plants are sensitive to 5-fluoro-uracil. As an indication of DNA damage, inactivation of dUTPase results in the induction of AtRAD51 and AtPARP2, which are involved in DNA repair. Nevertheless, RNAi/DUT1 constructs are compatible with a rad51 mutation. Using a TUNEL assay, DNA damage was observed in the RNAi/DUT1 plants. Finally, plants carrying a homologous recombination (HR) exclusive substrate transformed with the RNAi/DUT1 construct exhibit a seven times increase in homologous recombination events. Increased HR was only detected in the plants that were the most sensitive to 5-fluoro-uracils, thus establishing a link between uracil incorporation in the genomic DNA and HR. Our results show for the first time that genetic instability provoked by the presence of uracils in the DNA is poorly tolerated and that this base misincorporation globally stimulates HR in plants

    DNA repair, genome stability and cancer: a historical perspective

    Get PDF
    The multistep process of cancer progresses over many years. The prevention of mutations by DNA repair pathways led to an early appreciation of a role for repair in cancer avoidance. However, the broader role of the DNA damage response (DDR) emerged more slowly. In this Timeline article, we reflect on how our understanding of the steps leading to cancer developed, focusing on the role of the DDR. We also consider how our current knowledge can be exploited for cancer therapy

    Searching the protein structure database for ligand-binding site similarities using CPASS v.2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent analysis of protein sequences deposited in the NCBI RefSeq database indicates that ~8.5 million protein sequences are encoded in prokaryotic and eukaryotic genomes, where ~30% are explicitly annotated as "hypothetical" or "uncharacterized" protein. Our Comparison of Protein Active-Site Structures (CPASS v.2) database and software compares the sequence and structural characteristics of experimentally determined ligand binding sites to infer a functional relationship in the absence of global sequence or structure similarity. CPASS is an important component of our Functional Annotation Screening Technology by NMR (FAST-NMR) protocol and has been successfully applied to aid the annotation of a number of proteins of unknown function.</p> <p>Findings</p> <p>We report a major upgrade to our CPASS software and database that significantly improves its broad utility. CPASS v.2 is designed with a layered architecture to increase flexibility and portability that also enables job distribution over the Open Science Grid (OSG) to increase speed. Similarly, the CPASS interface was enhanced to provide more user flexibility in submitting a CPASS query. CPASS v.2 now allows for both automatic and manual definition of ligand-binding sites and permits pair-wise, one versus all, one versus list, or list versus list comparisons. Solvent accessible surface area, ligand root-mean square difference, and Cβ distances have been incorporated into the CPASS similarity function to improve the quality of the results. The CPASS database has also been updated.</p> <p>Conclusions</p> <p>CPASS v.2 is more than an order of magnitude faster than the original implementation, and allows for multiple simultaneous job submissions. Similarly, the CPASS database of ligand-defined binding sites has increased in size by ~ 38%, dramatically increasing the likelihood of a positive search result. The modification to the CPASS similarity function is effective in reducing CPASS similarity scores for false positives by ~30%, while leaving true positives unaffected. Importantly, receiver operating characteristics (ROC) curves demonstrate the high correlation between CPASS similarity scores and an accurate functional assignment. As indicated by distribution curves, scores ≥ 30% infer a functional similarity. Software URL: <url>http://cpass.unl.edu</url>.</p
    corecore